精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

(1)(2)(3)

解析试题分析:解:(1)由已知,
∴方程组有实数解,从而,故 …2分
所以,即的取值范围是.                   ……………4分
(2)设椭圆上的点到一个焦点的距离为

).                           ……………6分
,∴当时,
于是,,解得 .
∴所求椭圆方程为.                       ……………8分
(3)由 (*)
∵直线与椭圆交于不同两点, ∴△,即.①  ………10分
,则是方程(*)的两个实数解,
,∴线段的中点为
又∵线段的垂直平分线恒过点,∴
,即(k)②          ……………12分
由①,②得,又由②得
∴实数的取值范围是.                            ……………14分
考点:椭圆的方程和性质;直线的方程;两直线垂直的判定定理。
点评:本题第一小题也可这样来求解,椭圆跟y轴正半轴的交点为,若椭圆要与圆相交,则;第二小题可以结合椭圆的特点来求,当椭圆上的点是时,它到附近的焦点的距离就是最短距离;第三小题需要注意直线与椭圆相交时应满足的条件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题满分14分)
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设双曲线的方程为为其左、右两个顶点,是双曲线 上的任意一点,作,垂足分别为交于点.
(1)求点的轨迹方程;
(2)设的离心率分别为,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知点是抛物线上相异两点,且满足
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率

查看答案和解析>>

同步练习册答案