(本题满分15分)
已知点,是抛物线上相异两点,且满足.
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.
(1)(2)
解析试题分析:方法一:
解:(I)当垂直于轴时,显然不符合题意,
所以可设直线的方程为,代入方程得:
∴ ………………………………2分
得:
∴直线的方程为
∵中点的横坐标为1,∴中点的坐标为 …………………………4分
∴的中垂线方程为
∵的中垂线经过点,故,得 ………………………6分
∴直线的方程为 ………………………7分
(Ⅱ)由(I)可知的中垂线方程为,∴点的坐标为 …………8分
因为直线的方程为
∴到直线的距离 …………………10分
由得,
…………………………12分
∴, 设,则,
,,由,得
即时
此时直线的方程为 ……………15分
(本题若运用基本不等式解决,也同样给分)
法二:
(1)根据题意设的中点为,则 ………………2分
由、两点得中垂线的斜率为, ………………4分
由,得 ………………6分
∴直线的方程为 ………………7分
(2)由(1)知直线
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.
(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
设椭圆()的两个焦点是和(),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线()与交于不同的两点、,若线段的垂直平分线恒过点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知为坐标原点,点分别在轴轴上运动,且=8,动点满足 =,设点的轨迹为曲线,定点为直线交曲线于另外一点
(1)求曲线的方程;
(2)求 面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点到的距离比它到轴的距离多一个单位.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线及轴所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线:的焦点为,、是抛物线上异于坐标原点的不同两点,抛物线在点、处的切线分别为、,且,与相交于点.
(1) 求点的纵坐标;
(2) 证明:、、三点共线;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com