精英家教网 > 高中数学 > 题目详情

求过两直线的交点,且满足下列条件的直线的方程.
(Ⅰ)和直线垂直;
(Ⅱ)在轴,轴上的截距相等.

(Ⅰ)(Ⅱ)

解析试题分析:解:由可得两直线的交点为………………2分
(Ⅰ)直线与直线垂直
直线的斜率为
则直线的方程为              ………………6分
(Ⅱ)当直线过原点时,直线的方程为   ………………8分
当直线不过原点时,令的方程为
直线
则直线的方程为               ………………12分
考点:求两直线的交点;直线的方程;直线垂直的判定定理。
点评:求直线的方程是高中课程学习中最基本的要求。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知点是抛物线上相异两点,且满足
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率.
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于两点 .
(1)求椭圆的方程;
(2)求面积的最大值;
(3)设点为点关于轴的对称点,判断的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)双曲线的离心率等于4,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知点,直线 交轴于点,点上的动点,过点垂直于的直线与线段的垂直平分线交于点
(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若均不重合,设直线的斜率分别为,求的值。

查看答案和解析>>

同步练习册答案