(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若与均不重合,设直线的斜率分别为,求的值。
科目:高中数学 来源: 题型:解答题
(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是。
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆,离心率为的椭圆经过点.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线分别与椭圆交于和,是否存在常数,使得?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
在直角坐标系中,点到两点,的距离之和等于,设点的轨迹为。
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于和。
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知抛物线的顶点为坐标原点,焦点在轴上. 且经过点,
(1)求抛物线的方程;
(2)若动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com