精英家教网 > 高中数学 > 题目详情

如图,已知抛物线,焦点为,顶点为,点在抛物线上移动,的中点,的中点,求点的轨迹方程.

解析试题分析:设
易求的焦点的坐标为(1,0),                                         ……2分
的中点,
,                                        ……6分
的中点,
,                                  ……10分   ∵P在抛物线上,∴
所以M点的轨迹方程为.                                                 ……12分
考点:本小题主要考查利用相关点法求轨迹方程.
点评:求轨迹方程时本着“求谁设谁”的原则,方法主要要相关点法、代人法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线点,且
,,
的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若均不重合,设直线的斜率分别为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且
点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.
(1)求的标准方程;
(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两
,,且满足?若存在,求出直线的方程; 若不存在,说明
理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

同步练习册答案