如图,已知抛物线
,焦点为
,顶点为
,点
在抛物线上移动,
是
的中点,
是
的中点,求点
的轨迹方程.![]()
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,且过点(
),
(1)求椭圆的方程;
(2)设直线
与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到F(1,0)的距离比点P到
轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线
于
点,且
,
,
求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(1)求椭圆的标准方程;
(2)若
与
均不重合,设直线
的斜率分别为
,求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知
是椭圆
上一点,
,
是椭圆的两焦点,且满足![]()
(Ⅰ)求椭圆方程;
(Ⅱ)设
、
是椭圆上任两点,且直线
、
的斜率分别为
、
,若存在常数
使
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C的中心在原点,焦点在
轴上,左右焦点分别为
,且
,
点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)过
的直线
与椭圆
相交于
两点,且
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 将圆O:
上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线
、抛物线
的焦点是直线y=x-1与x轴的交点.
(1)求
,
的标准方程;
(2)请问是否存在直线
满足条件:① 过
的焦点
;②与
交于不同两
点
,
,且满足
?若存在,求出直线
的方程; 若不存在,说明
理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
与
轴围成一个等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com