精英家教网 > 高中数学 > 题目详情

已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线点,且
,,
的值。

(1)(2)0

解析试题分析:(1)由题意可知,动点P到F(1,0)的距离与到直线的距离相等,由抛物线定义可知,动点P在以F(1,0)为焦点,以直线为准线的抛物线上,
方程为----------4分
(2)显然直线的斜率存在,设直线AB的方程为:

 ------6分
,同理--------8分
所以==0--------12分
考点:求动点的轨迹方程及直线与抛物线的位置关系
点评:本题求轨迹方程用到的是定义法,此法在求轨迹的题目中应用广泛

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?若是,求出m+n的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知抛物线上一动点,抛物线内一点,为焦点且的最小值为
求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;
过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
中心在原点,长半轴长与短半轴长的和为9,离心率为0.6,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
椭圆:的左、右顶点分别,椭圆过点且离心率.

(1)求椭圆的标准方程;
(2)过椭圆上异于两点的任意一点轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点.
①求点所在曲线的方程;
②试判断直线与以为直径的圆的位置关系, 并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆,离心率为的椭圆经过点.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线分别与椭圆交于,是否存在常数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线,焦点为,顶点为,点在抛物线上移动,的中点,的中点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)直线与双曲线相交于两点,
(1)求的取值范围
(2)当为何值时,以为直径的圆过坐标原点.

查看答案和解析>>

同步练习册答案