精英家教网 > 高中数学 > 题目详情

(12分)直线与双曲线相交于两点,
(1)求的取值范围
(2)当为何值时,以为直径的圆过坐标原点.

(1) ;(2)

解析试题分析:(1)利用直线与双曲线交于不同的两点,所以它们的方程联立消去y得到关于x的一元二次方程有两个不同的实数根,在二次项系数不为零的情况下,判别式应大于零.
(2)以AB为直径的圆过原点实质是,
从而借助直线方程和韦达定理得到关于a的方程求出a值.
(1) 由  可得:,依题意得

解之得:……6分
(2)、设两点的坐标分别为,由题意可知,所以:,由(1)知
所以:
所以:,即………12分.
考点:直线与双曲线的位置关系.
点评:(1)直线与双曲线的位置关系可以通过它们的方程联立消去y得到关于x的方程的根的个数来判断,进而可利用在保证二次项系数不为零的情况下,通过判别式来判断.
(2)以AB为直径的圆过原点,根据直径所对的圆周角为直角可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线点,且
,,
的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且
点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.
(1)求的标准方程;
(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两
,,且满足?若存在,求出直线的方程; 若不存在,说明
理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中点在原点且过点,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

同步练习册答案