(本小题满分13分)已知抛物线上一动点,抛物线内一点,为焦点且的最小值为。
求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;
过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。
科目:高中数学 来源: 题型:解答题
已知、分别是椭圆的左、右焦点。
(1)若是第一象限内该椭圆上的一点,,求点P的坐标;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点A、B,且为锐角(其中为坐标原点),求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于、两点 .
(1)求椭圆的方程;
(2)求面积的最大值;
(3)设点为点关于轴的对称点,判断与的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分12分)已知点,直线: 交轴于点,点是上的动点,过点垂直于的直线与线段的垂直平分线交于点.
(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交
椭圆于,两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线于点,且
,,
求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,
点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com