精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于,且,求椭圆的方程.

,或

解析试题分析:设所求椭圆的方程为
根据OP⊥OQ,据此可得到一个m,n的方程,再根据弦长公式根据,得到m,n的另一个方程.然后解方程组可求出椭圆的方程.
设所求椭圆的方程为
依题意,点P()、Q()的坐标满足方程组
解之并整理
…………………………………2分;
所以:        ①………………3分;
由OP⊥OQ
          ②…………6分;

|PQ|==
==  ③………………9分;
由①②③可得
………………11分;
故所求椭圆方程为,或………………12分..
考点:直线与椭圆的位置关系,弦长公式.
点评:本小题从方程的角度来考虑设出椭圆的方程,根据建立关于两个关于m,n的两个方程求出m,n从而得到椭圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题10分)双曲线的离心率等于4,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知半径为6的圆轴相切,圆心在直线上且在第二象限,直线过点
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆相交于两点且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若均不重合,设直线的斜率分别为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,点在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为

(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两   点.问:是否存在的值,
使以为直径的圆过点?请说明理由.

查看答案和解析>>

同步练习册答案