精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)依题意可知    
又∵,解得   ——————(2分)
则椭圆方程为.        ——————(4分)
(Ⅱ)联立方程 消去整理得:(6分)

解得     ①       ———————(7分)
,则,又

若存在,则,即:
  ②
代入②有

解得     ———————(11分)
检验都满足①,      ———————(12分)
考点:椭圆标准方程及直线与椭圆的位置关系
点评:此类题目的计算量较大,需注重培养学生的数据处理能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)双曲线与椭圆有相同焦点,且经过点(,4),求其方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于,且,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。
(Ⅰ)写出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
求过点M(0,1)且和抛物线C: 仅有一个公共点的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率

(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

同步练习册答案