精英家教网 > 高中数学 > 题目详情

(本题满分12分)双曲线与椭圆有相同焦点,且经过点(,4),求其方程.

解析试题分析:解:椭圆的焦点为(0,±3),c=3,………………………3分
设双曲线方程为,…………………………………6分
∵过点(,4),则,……………………………9分
得a2=4或36,而a2<9,∴a2=4,………………………………11分
双曲线方程为.………………………………………12分
考点:双曲线椭圆性质及标准方程
点评:此题还可利用椭圆定义求a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.
(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;
(Ⅱ)若动直线与轨迹处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知半径为6的圆轴相切,圆心在直线上且在第二象限,直线过点
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆相交于两点且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,
(1)求证:
(2)求证:A、F、B三点共线;
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点,长轴长6,设直线交椭圆两点,求线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的焦点F1(-,0)和F2,0),长轴长6。
(1)求椭圆C的标准方程。
(2)设直线交椭圆C于A、B两点,求线段AB的中点坐标。

查看答案和解析>>

同步练习册答案