(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.
(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;
(Ⅱ)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.
(Ⅰ)轨迹的方程,椭圆的方程为.(Ⅱ)的面积等于的直线不存在.
解析试题分析:(Ⅰ)设过圆心作直线直线的垂线,垂足为,由题意得,即动点到定点的距离与到定直线的距离相等.由抛物线的定义知,点的轨迹为以为焦点,直线为准线的抛物线,其方程为. ------3分
设椭圆方程为,将点代入方程得,
整理得,解得或(舍去).
故所求椭圆的方程为.------------------------6分
(Ⅱ)轨迹的方程为即,则,---------------7分
所以轨迹在处的切线的斜率为,故直线的斜率为, 假设符合题意的直线方程为. --------8分
代入椭圆方程化简得,设,,,,,-----------------9分
故,------------------------10分
又点到直线的距离是, --------------------11分
故-------------------13分
当且仅当,即取得等号(满足).--------------14分
此时的面积等于,
所以的面积等于的直线不存在.--------------15分
考点:椭圆的简单性质;圆的简单性质;轨迹方程的求法;直线与椭圆的综合应用。
点评:求轨迹方程的一般方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。本题求轨迹方程用到的是定义法。用定义法求轨迹方程的关键是条件的转化——转化成某一已知曲线的定义条件。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线于两点.
证明:以线段为直径的圆恒过轴上的定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设分别是椭圆的左,右焦点。
(1)若是第一象限内该椭圆上的一点,且·=求点的坐标。
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是.
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com