已知椭圆的顶点与双曲线
的焦点重合,它们的离心率之和为
,若椭圆的焦点在
轴上,求椭圆的方程.
科目:高中数学 来源: 题型:解答题
(本题满分12分)设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且
?若存在,写出该圆的方程,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知椭圆C1:
的离心率为
,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形, 求直线m的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点在坐标原点,它的准线经过双曲线
:
的左焦点
且垂直于
的两个焦点所在的轴,若抛物线
与双曲线
的一个交点是
.
(1)求抛物线
的方程及其焦点
的坐标;
(2)求双曲线
的方程及其离心率
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)直线l:y=kx+1与双曲线C:
的右支交于不同的两点A,B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在平面直坐标系
中,已知椭圆
,经过点
,其中e为椭圆的离心率.且椭圆
与直线
有且只有一个交点。![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设不经过原点的直线
与椭圆
相交与A,B两点,第一象限内的点
在椭圆上,直线
平分线段
,求:当
的面积取得最大值时直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分) 已知动圆
过定点
,且与直线
相切,椭圆
的对称轴为坐标轴,一个焦点是
,点
在椭圆
上.
(Ⅰ)求动圆圆心
的轨迹
的方程及其椭圆
的方程;
(Ⅱ)若动直线
与轨迹
在
处的切线平行,且直线
与椭圆
交于
两点,问:是否存在着这样的直线
使得
的面积等于
?如果存在,请求出直线
的方程;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com