(本小题满分13分)已知椭圆C1:
的离心率为
,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形, 求直线m的斜率k的取值范围.
(Ⅰ)
;(Ⅱ)
;(Ⅲ)![]()
解析试题分析:(Ⅰ)由
………………2分
由直线![]()
所以椭圆的方程是
…………………4分
(Ⅱ)由条件,知|MF2|=|MP|。即动点M到定点F2的距离等于它到直线
的距离,由抛物线的定义得点M的轨迹C2的方程是
。 …………8分
(Ⅲ)由(1),得圆O的方程是![]()
设![]()
得
则
……………9分
由
①…………10分
因为![]()
![]()
所以
②……12分
由A、R、S三点不共线,知
。 ③
由①、②、③,得直线m的斜率k的取值范围是
……13分
考点:本题考查了椭圆的方程及直线与椭圆的位置关系
点评:求解圆锥曲线的方程关键是求解a和b,可应用已知条件得到关于两个参量的方程或由性质直接求得;向量在圆锥曲线问题中往往只起到一个工具的作用,即为解题提供方程或函数.求解解析几何问题也要注重对数学思想的应用.
科目:高中数学 来源: 题型:解答题
(本小题12分)已知椭圆
的离心率为
,
为椭圆的右焦点,
两点在椭圆
上,且
,定点
。
(1)若
时,有
,求椭圆
的方程;
(2)在条件(1)所确定的椭圆
下,当动直线
斜率为k,且设
时,试求
关于S的函数表达式f(s)的最大值,以及此时
两点所在的直线方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线
相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线
相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点F( 1,0),
与直线4x+3y + 1 =0相切,动圆M与
及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向
各引一条切线,切点 分别为P,Q,记
.求证
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知椭圆
的焦点为
、
,离心率为
,过点
的直线
交椭圆
于
、
两点.![]()
(1)求椭圆
的方程;
(2)①求直线
的斜率
的取值范围;
②在直线
的斜率
不断变化过程中,探究
和
是否总相等?若相等,请给出证明,若不相等,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
及点
,直线
的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线
在
轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的中心是坐标原点
,焦点在x轴上,离心率为
,又椭圆上任一点到两焦点的距离和为
,过点M(0,
)与x轴不垂直的直线
交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com