(本小题满分10分)
已知点,参数,点Q在曲线C:上.
(1)求在直角坐标系中点的轨迹方程和曲线C的方程;
(2)求|PQ|的最小值.
(1)点的轨迹是上半圆:曲线C的直角坐标方程:(2)-1
解析试题分析:设点P的坐标为(x,y),则有消去参数α,可得由于α∈[0,π],∴y≥0,故点P的轨迹是上半圆∵曲线C:,即,即 ρsinθ-ρcosθ=10,故曲线C的直角坐标方程:x-y+10=0.(2)如图所示:由题意可得点Q在直线x-y+10="0" 上,点P在半圆上,半圆的圆心C(1,0)到直线x-y+10=0的距离等于.即|PQ|的最小值为-1.
考点:本题考查了把参数方程、极坐标方程化为直角坐标方程的方法及直线与圆的位置关系
点评:对于参数方程与极坐标的考查,主要的就是考查参数方程和极坐标转化为普通方程的过程,有时需要注意参数和极坐标的角的范围.直线的极坐标方程的建立一般是通过直角三角形来处理
科目:高中数学 来源: 题型:解答题
已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是(-1,0),过直线上一点引椭圆的两条切线,切点分别是A、B.
(1)求椭圆的方程;
(2)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数,使得求证: (点C为直线AB恒过的定点).若存在,请求出,若不存在请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,椭圆C方程为 (),点为椭圆C的左、右顶点。
(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足,求证:直线过定点,并求出该点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。
(I)求椭圆的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这
样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在、的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的、的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程; (2)若直线与曲线相交于不同两点、(、不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且·="0," ||=||.(点C在x轴上方)
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于M,N两个不同点,求面积的最大值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知椭圆C1:的离心率为,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形, 求直线m的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com