(本小题满分12分)
在平面直角坐标系
中,点
到两定点F1
和F2
的距离之和为
,设点
的轨迹是曲线
.(1)求曲线
的方程; (2)若直线
与曲线
相交于不同两点
、
(
、
不是曲线
和坐标轴的交点),以
为直径的圆过点
,试判断直线
是否经过一定点,若是,求出定点坐标;若不是,说明理由.
科目:高中数学 来源: 题型:解答题
已知椭圆E:
的焦点坐标为
(
),点M(
,
)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线
与椭圆E交于
两点,求线段
中点
的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在平面直角坐标系
中,椭圆
的焦距为2,且过点
.
求椭圆
的方程;
若点
,
分别是椭圆
的左、右顶点,直线
经过点
且垂直于
轴,点
是椭圆上异于
,
的任意一点,直线
交
于点![]()
![]()
(ⅰ)设直线
的斜率为
直线
的斜率为
,求证:
为定值;
(ⅱ)设过点
垂直于
的直线为
.求证:直线
过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆
的方程;
(2)设O为坐标原点,点A,B分别在椭圆
和
上,
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知椭圆
的焦点为
、
,离心率为
,过点
的直线
交椭圆
于
、
两点.![]()
(1)求椭圆
的方程;
(2)①求直线
的斜率
的取值范围;
②在直线
的斜率
不断变化过程中,探究
和
是否总相等?若相等,请给出证明,若不相等,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com