(本小题满分13分)
如图,已知椭圆
的焦点为
、
,离心率为
,过点
的直线
交椭圆
于
、
两点.![]()
(1)求椭圆
的方程;
(2)①求直线
的斜率
的取值范围;
②在直线
的斜率
不断变化过程中,探究
和
是否总相等?若相等,请给出证明,若不相等,说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系
中,点
到两定点F1
和F2
的距离之和为
,设点
的轨迹是曲线
.(1)求曲线
的方程; (2)若直线
与曲线
相交于不同两点
、
(
、
不是曲线
和坐标轴的交点),以
为直径的圆过点
,试判断直线
是否经过一定点,若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为
,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且
。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知椭圆C1:
的离心率为
,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形, 求直线m的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的一个焦点是F(1,0),且离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点在坐标原点,它的准线经过双曲线
:
的左焦点
且垂直于
的两个焦点所在的轴,若抛物线
与双曲线
的一个交点是
.
(1)求抛物线
的方程及其焦点
的坐标;
(2)求双曲线
的方程及其离心率
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com