精英家教网 > 高中数学 > 题目详情

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:













 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

(1)。(2)

解析试题分析:(1)∵焦点在x轴上,且椭圆与抛物线的中心与顶点在原点,又过点
故点在椭圆上,点在抛物线

∴点上,

把点代入得

由抛物线
(2)由
若l与x轴垂直,则l:x=1

不满足
若存在直线l不与x轴垂直,可设为



    

      
所求的直线为
考点:椭圆与抛物线的标准方程及简单性质;直线与椭圆的综合应用。
点评:(1)做第一问的关键是确定哪两个点在椭圆上,哪两个点在抛物线上。(2)在求直线与圆锥曲线相交的有关问题时,通常采用设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,已知椭圆的焦点为,离心率为,过点的直线交椭圆两点.

(1)求椭圆的方程;
(2)①求直线的斜率的取值范围;
②在直线的斜率不断变化过程中,探究是否总相等?若相等,请给出证明,若不相等,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知椭圆经过点,且其右焦点与抛物线的焦点F重合.
(Ⅰ)求椭圆的方程;
(II)直线经过点与椭圆相交于A、B两点,与抛物线相交于C、D两点.求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题16分)设双曲线:的焦点为F1,F2.离心率为2。
(1)求此双曲线渐近线L1,L2的方程;
(2)若A,B分别为L1,L2上的动点,且2,求线段AB中点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线两点.  
证明:以线段为直径的圆恒过轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(1)若是第一象限内该椭圆上的一点,且·=求点的坐标。
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。
(Ⅰ)写出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

同步练习册答案