精英家教网 > 高中数学 > 题目详情

.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

(1);(2)

解析试题分析:(1)
(2)

因为三点共线
,同理

   

考点:本题考查了双曲线方程的求法及直线与双曲线的位置关系。
点评:本题主要考查双曲线的标准方程和性质、数量积的应用等基础知识,考查曲线和方程的关系等解析几何的基本思想方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

讨论方程)所表示的曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,它的准线经过双曲线的左焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B.
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某海域有两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系。

(1)求曲线的标准方程;(6分)
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:













 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.

查看答案和解析>>

同步练习册答案