精英家教网 > 高中数学 > 题目详情

(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.

(1)(2)①证明见解析②

解析试题分析:(1)易知双曲线的焦点为(-2,0),(2,0),离心率为,……2分
则在椭圆C中a=2,e=
故在椭圆C中c=,b=1,所以椭圆C的方程为               ……4分
(2)①设M(x0,y0)(x0≠±2),由题易知A(-2,0),B(2,0),
则kMA,kMB,故kMA·kMB,        ……6分
点M在椭圆C上,则,即
故kMA·kMB,即直线MA,MB的斜率之积为定值。                      ……8分
②解法一:设P(4,y1),Q(4,y2),则kMA=kPA,kMB=kBQ,……9分
由①得,即y1y2=-3,当y1>0,y2<0时,|PQ|=|y1-y2|≥2 ,当且仅当y1,y2=-时等号成立.……11分
同理,当y1<0,y2>0时,当且仅当,y2时,|PQ|有最小值. ……12分
解法二:设直线MA的斜率为k,则直线MA的方程为y=k(x+2),从而P(4,6k) ……9分
由①知直线MB的斜率为,则直线MB的方程为y=(x-2),
故得,故,当且仅当时等号成立,
即|PQ|有最小值.                                                  ……12分
考点:本小题主要考查椭圆与双曲线中基本量的关系、椭圆标准方程的求解和直线与椭圆的位置关系、两点间的位置关系和利用基本不等式求最值,考查学生分析问题、转化问题的能力和运算求解能力.
点评:直线与圆锥曲线位置关系的题目是每年高考必考的题目,且一般都以压轴题的形式出现,所以难度较大,关键是运算量比较大,要尽量应用数形结合简化运算,还要细心求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线两点.  
证明:以线段为直径的圆恒过轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(1)若是第一象限内该椭圆上的一点,且·=求点的坐标。
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设椭圆C1的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2轴的交点为B,且经过F1,F2点.

(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)双曲线与椭圆有相同焦点,且经过点(,4),求其方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。
(Ⅰ)写出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆.过点作圆的切线交椭圆
两点.
(1)求椭圆的焦点坐标和离心率;
(2)将表示为的函数,并求的最大值.

查看答案和解析>>

同步练习册答案