在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
(1)设抛物线的标准方程为,则,
所以抛物线方程为
(2)直线MO的方程:,与联立解得A点坐标,B点坐标,得出直线AB的方程为:,说明直线AB恒过定点(1,0)。
解析试题分析:(1)设抛物线的标准方程为,则,
所以抛物线方程为
(2)抛物线C的准线方程为,设,其中,
直线MO的方程:,将与联立解得A点坐标。
同理可得B点坐标,则直线AB的方程为:
整理得,故直线AB恒过定点(1,0)。
考点:本题主要考查直线方程,抛物线标准方程,直线与抛物线的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求抛物线标准方程时,主要运用了抛物线的几何性质。(2)证明直线过定点问题时,巧妙地假设,并应用假设字母表示点的坐标,值得学习。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)已知椭圆的离心率为,为椭圆的右焦点,两点在椭圆上,且,定点。
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知椭圆的焦点为、,离心率为,过点的直线交椭圆于、两点.
(1)求椭圆的方程;
(2)①求直线的斜率的取值范围;
②在直线的斜率不断变化过程中,探究和是否总相等?若相等,请给出证明,若不相等,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com