已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆于两点,交轴于点,且.
(1)求直线的方程;
(2)求椭圆长轴长的取值范围.
科目:高中数学 来源: 题型:解答题
己知椭圆的离心率为,是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆过两点.当圆心与原点的距离最小时,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:;
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是(-1,0),过直线上一点引椭圆的两条切线,切点分别是A、B.
(1)求椭圆的方程;
(2)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数,使得求证: (点C为直线AB恒过的定点).若存在,请求出,若不存在请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为,离心率为。
(1)若,求椭圆的方程。
(2)设直线与椭圆相交于两点,分别为线段的中点。若坐标原点在以线段为直径的圆上,且,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分13分)
(1)某三棱锥的侧视图和俯视图如图所示,求三棱锥的体积.
(2)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点. 用表示A,B之间的距离;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)
如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,
定点B的坐标为(2,0).
(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程; (2)若直线与曲线相交于不同两点、(、不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com