精英家教网 > 高中数学 > 题目详情

己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.

(1)  (2)

解析试题分析:解:(1)依题意有: ①            2分
四边形是以椭圆的四顶点为顶点的菱形
可得: ②               4分
由①、②解得:所以椭圆的方程为:        6分
(2)依题意得
可得的垂直平分线的方程为: ③       8分
圆心上,当圆心与原点的距离最小时,
可得的方程为 ④                         10分
联立③、④得,即         12分
由此可得  ,
所以圆的方程为:    14分
考点:椭圆方程,圆的方程
点评:解决的关键是利用椭圆的几何性质来得到其方程,同时能借助于直线与圆的关系来得到圆的方程,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于两点,抛物线在两点处的切线交于点.

(Ⅰ)求证:三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于两点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点到点的距离与点轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的两个焦点为的曲线C上.(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,经过点的动直线交抛物线于点.
(1)求抛物线的方程;
(2)若(为坐标原点),且点在抛物线上,求直线倾斜角;
(3)若点是抛物线的准线上的一点,直线的斜率分别为.求证:
为定值时,也为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.

查看答案和解析>>

同步练习册答案