已知双曲线
的两个焦点为
的曲线C上.(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为
求直线l的方程
(Ⅰ)
(Ⅱ)方程分别为y=
和![]()
解析试题分析:(Ⅰ)依题意,由a2+b2=4,得双曲线方程为
(0<a2<4),
将点(3,
)代入上式,得
.解得a2=18(舍去)或a2=2,故所求双曲线方程为![]()
(Ⅱ)依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.
∵直线I与双曲线C相交于不同的两点E、F,
∴
∴k∈(-
)∪(1,
).
设E(x1,y1),F(x2,y2),则由①式得x1+x2=
于是
|EF|=![]()
=
,而原点O到直线l的距离d=
,
∴SΔOEF=![]()
若SΔOEF=
,即
解得k=±
,满足②.
故满足条件的直线l有两条,其方程分别为y=
和![]()
考点:双曲线的标准方程;直线与圆锥曲线的综合问题.
点评:本题主要考查了双曲线的方程和双曲线与直线的关系,注意计算的灵活处理,考查了学生综合运
算能力.
科目:高中数学 来源: 题型:解答题
已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m![]()
,m
0),点P的轨迹加上M、N两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若
,曲线C过点Q (2,0) 斜率为
的直线
与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为
,求证
为定值;
(3) 在(2)的条件下,设
,且
,求
在y轴上的截距的变化范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是椭圆
的右焦点,点
、
分别是
轴、
轴上的动点,且满足
.若点
满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
、
两点,直线
、
与直线
分别交
于点
、
(
为坐标原点),试判断
是否为定值?若是,求出这个定值;若不是,
请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
己知椭圆
的离心率为
,
是椭圆的左右顶点,
是椭圆的上下顶点,四边形
的面积为
.
(1)求椭圆
的方程;
(2)圆
过
两点.当圆心
与原点
的距离最小时,求圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是F抛物线
与椭圆
的公共焦点,且椭圆的离心率为![]()
![]()
(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线
,切点P在第一象限,如图,设切线
与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为
(其中
为坐标原点),若
,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=![]()
(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的长轴长为
,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为
,离心率为
。
(1)若
,求椭圆的方程。
(2)设直线
与椭圆相交于
两点,
分别为线段
的中点。若坐标原点
在以线段
为直径的圆上,且
,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com