精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

(1). (2)满足条件的点有两个.

解析试题分析:(1)解法1:设椭圆的方程为,
依题意:    解得:                        2分
∴ 椭圆的方程为.                          3分
解法2:设椭圆的方程为
根据椭圆的定义得,即,               1分
, ∴.                              2分
∴ 椭圆的方程为.                            3分
(2)解法1:设点,,则

三点共线,           ∴.                  4分
,                  
化简得:. ①                          5分
,即.                             6分
∴抛物线在点处的切线的方程为,即. ②
同理,抛物线在点处的切线的方程为 .  ③      8分
设点,由②③得:
,则 .                                      9分
代入②得 ,                                         10分
代入 ① 得 ,即点的轨迹方程为.                                           11分
 ,则点在椭圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:函数上是增函数;命题q:方程有两个不相等的负实数根。求使得pq是真命题的实数对为坐标的点的轨迹图形及其面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(1)椭圆C的方程;(2)直线l交y轴于点M,且,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;(3)接AE、BD,试证明当m变化时,直线AE与BD相交于定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是(-1,0),过直线上一点引椭圆的两条切线,切点分别是A、B.
(1)求椭圆的方程;
(2)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数,使得求证: (点C为直线AB恒过的定点).若存在,请求出,若不存在请说明理由

查看答案和解析>>

同步练习册答案