如图,已知直线l:x=my+1过椭圆
的右焦点F,抛物线:
的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(1)椭圆C的方程;(2)直线l交y轴于点M,且
,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由;(3)接AE、BD,试证明当m变化时,直线AE与BD相交于定点
.![]()
(1)![]()
(2) 当m变化时,λ1+λ2的值为定值
;
(3)当m变化时,AE与BD相交于定点![]()
解析试题分析:(1)知椭圆右焦点F(1,0),∴c=1,
抛物线
的焦点坐标
,∴
∴b2=3
∴a2=b2+c2=4∴椭圆C的方程
4分
(2)知m≠0,且l与y轴交于
,
设直线l交椭圆于A(x1,y1),B(x2,y2)
由
- 5分
∴△=(6m)2+36(3m2+4)=144(m2+1)>0
∴
6分
又由![]()
∴![]()
同理
- 7分
∴![]()
∵![]()
∴![]()
所以,当m变化时,λ1+λ2的值为定值
; 9分
(3):由(2)A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2)
方法1)∵
10分
当
时,
=![]()
=
12分
∴点
在直线lAE上, 13分
同理可证,点
也在直线lBD上;
∴当m变化时,AE与BD相交于定点
14分
方法2)∵
10分
- 11分![]()
=
12分
∴kEN=kAN∴A、N、E三点共线,
同理可得B、N、D也三点共线; 13分
∴当m变化时,AE与BD相交于定点
. 14分
考点:椭圆的方程,直线与椭圆的位置关系
点评:解决的关键是对于椭圆的几何性质的表示,以及联立方程组的思想结合韦达定理来求解,属于基础题。
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点
,过原点和
轴不重合的直线与椭圆
相交于
,
两点,且
,
最小值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若圆:
的切线
与椭圆
相交于
,
两点,当
,
两点横坐标不相等时,问:
与
是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线
的焦点为
,经过点
的动直线
交抛物线
于点
,
且
.
(1)求抛物线
的方程;
(2)若
(
为坐标原点),且点
在抛物线
上,求直线
倾斜角;
(3)若点
是抛物线
的准线上的一点,直线
的斜率分别为
.求证:
当
为定值时,
也为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点
的直线交椭圆于点
,求
面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
:
的左、右焦点分别为
,已知椭圆
上的任意一点
,满足
,过
作垂直于椭圆长轴的弦长为3.![]()
(1)求椭圆
的方程;
(2)若过
的直线交椭圆于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直角坐标平面上,
为原点,
为动点,
,
. 过点
作
轴于
,过
作
轴于点
,
. 记点
的轨迹为曲线
,
点
、
,过点
作直线
交曲线
于两个不同的点
、
(点
在
与
之间).
(1)求曲线
的方程;
(2)是否存在直线
,使得
,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com