精英家教网 > 高中数学 > 题目详情

直角坐标平面上,为原点,为动点,. 过点轴于,过轴于点. 记点的轨迹为曲线
,过点作直线交曲线于两个不同的点(点之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.

(1)  (2)不存在直线l,使得|BP|=|BQ|

解析试题分析:(Ⅰ)设点T的坐标为,点M的坐标为,则M1的坐标为(0,),
,于是点N的坐标为,N1的坐标
,所以   

由此得   

即所求的方程表示的曲线C是椭圆.       
(Ⅱ)点A(5,0)在曲线C即椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C
无交点,所以直线l斜率存在,并设为k. 直线l的方程为    
由方程组
依题意   
时,设交点PQ的中点为

 
     

不可能成立,所以不存在直线l,使得|BP|=|BQ|.  
考点:椭圆的标准方程;直线与圆锥曲线的综合问题.
点评:本题主要考查了椭圆的标准方程和椭圆与直线的关系.当涉及直线与圆锥曲线的位置关系时,常需要把直线方程与圆锥曲线的方程联立,借助韦达定理求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(1)椭圆C的方程;(2)直线l交y轴于点M,且,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;(3)接AE、BD,试证明当m变化时,直线AE与BD相交于定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;    
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线上任意一点;
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在坐标轴上的椭圆的方程为它的离心率为,一个焦点是(-1,0),过直线上一点引椭圆的两条切线,切点分别是A、B.
(1)求椭圆的方程;
(2)若在椭圆上的点处的切线方程是.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数,使得求证: (点C为直线AB恒过的定点).若存在,请求出,若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分13分)
(1)某三棱锥的侧视图和俯视图如图所示,求三棱锥的体积. 
 
(2)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点. 用表示A,B之间的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这
样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由

查看答案和解析>>

同步练习册答案