Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,过右焦点且斜率为的直线交椭圆于两点,为弦的中点,为坐标原点.
(1)求直线的斜率;
(2)求证:对于椭圆上的任意一点,都存在,使得成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.
(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
选修4-4:坐标系与参数方程
在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程为
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直角坐标平面上,为原点,为动点,,. 过点作轴于,过作轴于点,. 记点的轨迹为曲线,
点、,过点作直线交曲线于两个不同的点、(点在与之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的曲线是由部分抛物线和曲线“合成”的,直线与曲线相切于点,与曲线相切于点,记点的横坐标为,其中.
(1)当时,求的值和点的坐标;
(2)当实数取何值时,?并求出此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com