已知双曲线,为上任意一点;
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点,求的最小值.
科目:高中数学 来源: 题型:解答题
已知平面内一动点到点的距离与点到轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直角坐标平面上,为原点,为动点,,. 过点作轴于,过作轴于点,. 记点的轨迹为曲线,
点、,过点作直线交曲线于两个不同的点、(点在与之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线A C、BD过原点O,若,
(i) 求的最值.
(ii) 求证:四边形ABCD的面积为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com