精英家教网 > 高中数学 > 题目详情

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

(1)(2)(3)

解析试题分析:(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1.
又椭圆的焦点在x轴上, ∴椭圆的标准方程为
(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),
      得
又点P在椭圆上,得,
∴线段PA中点M的轨迹方程是
(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.
当直线BC不垂直于x轴时,设该直线方程为y=kx,代入,
解得B(,),C(-,-),
,又点A到直线BC的距离d=,
∴△ABC的面积S△ABC=
于是S△ABC=
≥-1,得S△ABC,其中,当k=-时,等号成立.
∴S△ABC的最大值是
考点:椭圆方程几何性质,直线与椭圆相交问题及轨迹方程
点评:第二问中求轨迹方程用到的是相关点法,即设出所求点坐标,转化到已知条件中的点然后代入已知椭圆方程;第三问需注意讨论直线斜率存在不存在两种情况,其中求最值用到了均值不等式,此题有一定的难度

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(1)椭圆C的方程;(2)直线l交y轴于点M,且,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;(3)接AE、BD,试证明当m变化时,直线AE与BD相交于定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;    
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线上任意一点;
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点AO为坐标原点,
定点B的坐标为(2,0).

(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

同步练习册答案