精英家教网 > 高中数学 > 题目详情

(本小题共12分)
如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点AO为坐标原点,
定点B的坐标为(2,0).

(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

(I)动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆 (II)(3-2,1).

解析试题分析:(I)由,  ∴直线l的斜率为 
l的方程为,∴点A坐标为(1,0)
   则

整理,得 
∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆
(II)由题意知直线l的斜率存在且不为零,设l方程为y=k(x-2)(k≠0)①
将①代入,整理,得
由△>0得0<k2<.  设E(x1y1),F(x2y2)
 ②
,由此可得
由②知

.
∴△OBE与△OBF面积之比的取值范围是(3-2,1).
考点:本题考查了直线与抛物线的位置关系
点评:对于直线与圆锥曲线的综合问题,往往要联立方程,同时结合一元二次方程根与系数的关系进行求解;而对于最值问题,则可将该表达式用直线斜率k表示,然后根据题意将其进行化简结合表达式的形式选取最值的计算方式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-,0).若,求直线l的倾斜角;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知圆的圆心为原点,且与直线相切。

(1)求圆的方程;
(2)点在直线上,过点引圆的两条切线,切点为,求证:直线恒过定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:的焦点坐标为),点M()在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)若点在抛物线上,且,求点的坐标.

查看答案和解析>>

同步练习册答案