(本小题共12分)
如图,已知直线l与抛物线
相切于点P(2,1),且与x轴交于点A,O为坐标原点,
定点B的坐标为(2,0).![]()
(1)若动点M满足
,求点M的轨迹C;
(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(I)动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为
,短轴长为2的椭圆 (II)(3-2
,1).
解析试题分析:(I)由
,
∴直线l的斜率为
故l的方程为
,∴点A坐标为(1,0)
设
则
,
由
得 ![]()
整理,得
∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为
,短轴长为2的椭圆
(II)由题意知直线l的斜率存在且不为零,设l方程为y=k(x-2)(k≠0)①
将①代入
,整理,得
,
由△>0得0<k2<
. 设E(x1,y1),F(x2,y2)
则
②
令
,由此可得![]()
由②知![]()
![]()
.
∴△OBE与△OBF面积之比的取值范围是(3-2
,1).
考点:本题考查了直线与抛物线的位置关系
点评:对于直线与圆锥曲线的综合问题,往往要联立方程,同时结合一元二次方程根与系数的关系进行求解;而对于最值问题,则可将该表达式用直线斜率k表示,然后根据题意将其进行化简结合表达式的形式选取最值的计算方式.
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点
的直线交椭圆于点
,求
面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-
,0).若
,求直线l的倾斜角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
的焦点坐标为
(
),点M(
,
)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线
与椭圆E交于
两点,求线段
中点
的轨迹方程;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com