已知椭圆
(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-
,0).若
,求直线l的倾斜角;
(Ⅰ)
(Ⅱ)直线l的倾斜角为
或
.
解析试题分析:(Ⅰ)由e=
,得
.再由
,解得a=2b.
由题意可知
,即ab=2.
解方程组
得a=2,b="1."
所以椭圆的方程为
.
(Ⅱ)解:由(Ⅰ)可知点A的坐标是(-2,0).设点B的坐标为
,直线l、的斜率为k.则直线l的方程为y=k(x+2).
于是A、B两点的坐标满足方程组
消去y并整理,得
.
由
,得
.从而
.
所以
.
由
,得
.
整理得
,即
,解得k=
.
所以直线l的倾斜角为
或
.
考点:直线与圆锥曲线的综合问题
点评:本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、直线的倾斜角、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查综合分析与运算能力.
科目:高中数学 来源: 题型:解答题
已知椭圆C的长轴长为
,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为
,离心率为
。
(1)若
,求椭圆的方程。
(2)设直线
与椭圆相交于
两点,
分别为线段
的中点。若坐标原点
在以线段
为直径的圆上,且
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆![]()
的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)
如图,已知直线l与抛物线
相切于点P(2,1),且与x轴交于点A,O为坐标原点,
定点B的坐标为(2,0).![]()
(1)若动点M满足
,求点M的轨迹C;
(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆的
左,右焦点。
(Ⅰ)若
是第一象限内该椭圆上的一点,且![]()
,求点
的坐标。
(Ⅱ)设过定点
的直线与椭圆交于不同的两点
,且
为锐角(其中O为坐标原点),求直线
的斜率
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点
在椭圆C:
上,且椭圆C的离心率
.![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知三点
,曲线
上任一点
满足
=![]()
(1) 求曲线
的方程;
(2) 设
是(1)中所求曲线
上的动点,定点
,线段
的垂直平分线与
轴交于点
,求实数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线顶点在坐标原点,焦点与椭圆
的右焦点
重合,过点
斜率为
的直线与抛物线交于
,
两点.![]()
(Ⅰ)求抛物线的方程;
(Ⅱ)求△
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com