(本小题满分12分)
已知点
在椭圆C:
上,且椭圆C的离心率
.![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
(Ⅰ)
(Ⅱ)![]()
解析试题分析:(Ⅰ)
,![]()
,![]()
![]()
椭圆C的方程为
——————————————2分
(Ⅱ)假设存在实数m,使得垂心T在Y轴上。
当直线斜率不存在时,设
,则
则有
,所以![]()
又
可解得![]()
(舍)
——————4分
当直线斜率存在时,设
(
)
,![]()
设直线方程为:
则
斜率为
,
,![]()
又
,![]()
![]()
即:
![]()
![]()
————————————6分
消去
可得:
![]()
![]()
=
——————8分
代入可得(
)![]()
![]()
--10分
又
![]()
综上知实数m的取值范围
——————————12分
考点:本题考查了直线与椭圆的位置关系
点评:对于直线与圆锥曲线的综合问题,往往要联立方程,同时结合一元二次方程根与系数的关系进行求解;而对于最值问题,则可将该表达式用直线斜率k表示,然后根据题意将其进行化简结合表达式的形式选取最值的计算方式
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率e=
,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-
,0).若
,求直线l的倾斜角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆C:
(
.![]()
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点
的直线
与椭圆C交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率k的取值范围;
(3)如图,过原点
任意作两条互相垂直的直线与椭圆
(
)相交于
四点,设原点
到四边形
一边的距离为
,试求
时
满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
的焦点坐标为
(
),点M(
,
)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线
与椭圆E交于
两点,求线段
中点
的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在平面直角坐标系
中,椭圆
的焦距为2,且过点
.
求椭圆
的方程;
若点
,
分别是椭圆
的左、右顶点,直线
经过点
且垂直于
轴,点
是椭圆上异于
,
的任意一点,直线
交
于点![]()
![]()
(ⅰ)设直线
的斜率为
直线
的斜率为
,求证:
为定值;
(ⅱ)设过点
垂直于
的直线为
.求证:直线
过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com