(本小题满分12分)
如图,在平面直角坐标系中,椭圆的焦距为2,且过点.
求椭圆的方程;
若点,分别是椭圆的左、右顶点,直线经过点且垂直于轴,点是椭圆上异于,的任意一点,直线交于点
(ⅰ)设直线的斜率为直线的斜率为,求证:为定值;
(ⅱ)设过点垂直于的直线为.求证:直线过定点,并求出定点的坐标.
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为,离心率为。
(1)若,求椭圆的方程。
(2)设直线与椭圆相交于两点,分别为线段的中点。若坐标原点在以线段为直径的圆上,且,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点在椭圆C: 上,且椭圆C的离心率.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知三点,曲线上任一点满足=
(1) 求曲线的方程;
(2) 设是(1)中所求曲线上的动点,定点,线段的垂直平分线与轴交于点,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程; (2)若直线与曲线相交于不同两点、(、不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,坐标原点到直线的距离为,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线顶点在坐标原点,焦点与椭圆的右焦点重合,过点斜率为的直线与抛物线交于,两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求△的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:+=1(a>b>0)的一个焦点是F(1,0),且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com