已知中心在原点,焦点在坐标轴上的椭圆
的方程为
它的离心率为
,一个焦点是(-1,0),过直线
上一点引椭圆
的两条切线,切点分别是A、B.
(1)求椭圆
的方程;
(2)若在椭圆![]()
上的点
处的切线方程是
.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数
,使得求证:
(点C为直线AB恒过的定点).若存在
,请求出,若不存在请说明理由
(I)椭圆
方程为
. (II)直线AB恒过定点
. (III)![]()
解析试题分析:(I)设椭圆方程为
的焦点是
,故
,又
,所以
,所以所求的椭圆
方程为
. 4分
(II)设切点坐标为
,
,直线
上一点M的坐标
,则切线方程分别为
,
,又两切线均过点M,即
,即点A,B的坐标都适合方程
,故直线AB的方程是
,显然直线
恒过点(1,0),故直线AB恒过定点
. 8分
(III)将直线AB的方程
,代入椭圆方程,得
,即
,
所以
,不妨设
,
,同理
, 12分
所以![]()
,
即
, 14分
考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系,存在性问题研究。
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、标准方程时,主要运用了椭圆的几何性质。对于存在性问题,往往先假设存在,利用已知条件加以探究,以明确计算的合理性。本题(III)通过假设t,利用韦达定理进一步确定相等长度,明确了关系。
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
:
的左、右焦点分别为
,已知椭圆
上的任意一点
,满足
,过
作垂直于椭圆长轴的弦长为3.![]()
(1)求椭圆
的方程;
(2)若过
的直线交椭圆于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直角坐标平面上,
为原点,
为动点,
,
. 过点
作
轴于
,过
作
轴于点
,
. 记点
的轨迹为曲线
,
点
、
,过点
作直线
交曲线
于两个不同的点
、
(点
在
与
之间).
(1)求曲线
的方程;
(2)是否存在直线
,使得
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的曲线
是由部分抛物线
和曲线
“合成”的,直线
与曲线
相切于点
,与曲线
相切于点
,记点
的横坐标为
,其中
.![]()
(1)当
时,求
的值和点
的坐标;
(2)当实数
取何值时,
?并求出此时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com