已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点、,点在轴上方,直线与抛物线相切.
(1)求抛物线的方程和点、的坐标;
(2)设A,B是抛物线C上两动点,如果直线,与轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的右焦点,过原点和轴不重合的直线与椭圆 相交于,两点,且,最小值为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若圆:的切线与椭圆相交于,两点,当,两点横坐标不相等时,问:与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线过点,,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点、,使得?若存在,试求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,过右焦点且斜率为的直线交椭圆于两点,为弦的中点,为坐标原点.
(1)求直线的斜率;
(2)求证:对于椭圆上的任意一点,都存在,使得成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.
(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com