精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,椭圆C方程为 (),点为椭圆C的左、右顶点。

(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足,求证:直线过定点,并求出该点的坐标。 

(1)
(2)

解析试题分析:解:(1) 由题意知    椭圆的标准方程为
(2)设,由…….(1)
联立方程
 带入(1)式整理的
所以得,
时,满足。此时,直线恒过点
时,满足。此时,直线恒过点不符合题意,舍。
所以,直线恒过定点
考点:椭圆的方程以及直线与椭圆的位置关系
点评:解决该试题的关键是利用椭圆性质来求解方程,同时能利用韦达定理和垂直关系得到结论,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.

(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.

(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知圆的圆心为原点,且与直线相切。

(1)求圆的方程;
(2)点在直线上,过点引圆的两条切线,切点为,求证:直线恒过定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知点,参数,点Q在曲线C:上.
(1)求在直角坐标系中点的轨迹方程和曲线C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

查看答案和解析>>

同步练习册答案