精英家教网 > 高中数学 > 题目详情

(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

(I)(II)

解析试题分析:

解:(I)
所以,所求椭圆方程为.   (4分)
(II)设
过A,B的直线方程为
由M分有向线段所成的比为2,得,(6分)
则由 得(8分)
,  消 x2得 
解得                                         (11分)
所以, .                                            (12分)
考点:椭圆的方程;直线的方程。
点评:求曲线的方程是一个重要的考点,对于题目涉及曲线的交点,常用到根与系数的关系式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点轴上的动点,点轴上的动点,点为定点,且满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点且斜率为的直线与曲线交于两点,试判断在轴上是否存在点,使得成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1) 求椭圆C的方程;
(2) 若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,椭圆C方程为 (),点为椭圆C的左、右顶点。

(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足,求证:直线过定点,并求出该点的坐标。 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设双曲线的方程为为其左、右两个顶点,是双曲线 上的任意一点,作,垂足分别为交于点.
(1)求点的轨迹方程;
(2)设的离心率分别为,当时,求的取值范围.

查看答案和解析>>

同步练习册答案