精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

(1)  (2)

解析试题分析:解:(1)由已知,椭圆方程可设为
∵长轴长为,离心率, 即.
.所求椭圆方程为.       4分
(2)当直线轴垂直时,直线的方程为,此时小于为邻边的平行四边形不可能是矩形.        5分
当直线轴不垂直时,设直线的方程为
  可得
∴由求根公式可得:.
.   7分
.
.
因为以为邻边的平行四边形是矩形,所以
所以..
,
.      10分
所求直线的方程为.    1 2分
考点:直线与椭圆的位置关系
点评:解决该试题的关键是利用椭圆的性质得到a,b,c的关系式,同时联立方程组来得到韦达定理,集合向量的数量积公式求解运算,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

选修4-4:坐标系与参数方程
在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程为
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,设点分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为

(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知抛物线和点,若抛物线上存在不同两点满足
(I)求实数的取值范围;
(II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于两点,直线分别与抛物线交于点

(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线轴上的截距为交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。

查看答案和解析>>

同步练习册答案