精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知抛物线和点,若抛物线上存在不同两点满足
(I)求实数的取值范围;
(II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

(1) 即的取值范围为
(2) 满足题设的点存在,其坐标为 . 

解析试题分析:解法1:(I)不妨设AB,且,∵
.∴
根据基本不等式(当且仅当时取等号)得
),即
,即的取值范围为
(II)当时,由(I求得的坐标分别为
假设抛物线上存在点,且),使得经过三点的圆和抛物线在点处有相同的切线.
设经过三点的圆的方程为
 
整理得 .                 ①
∵函数的导数为
∴抛物线在点处的切线的斜率为
∴经过三点的圆在点处的切线斜率为
,∴直线的斜率存在.∵圆心的坐标为
,即.      ②
,由①、②消去,得. 即
,∴.故满足题设的点存在,其坐标为
解法2:(I)设两点的坐标为,且
,可得的中点,即
显然直线轴不垂直,设直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆C:(a>b>0)的右焦点为F(1,0),离心率为,P为左顶点。
(1)求椭圆C的方程;
(2)设过点F的直线交椭圆C于A,B两点,若△PAB的面积为,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知直线与曲线交于不同的两点为坐标原点.
(1)若,求证:曲线是一个圆;
(2)若,当时,求曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

同步练习册答案