(本题满分12分)
已知直线与曲线交于不同的两点,为坐标原点.
(1)若,求证:曲线是一个圆;
(2)若,当且时,求曲线的离心率的取值范围.
(1)设直线与曲线的交点为∴
在上∴,两式相减得∴ 即: ∴曲线是一个圆
(2)
解析试题分析:(1)证明:设直线与曲线的交点为
∴ 即:
∴ ……………………2分
在上
∴,
∴两式相减得: ……………………4分
∴ 即:
∴曲线是一个圆 ……………………6分
(2)设直线与曲线的交点为,
∴曲线是焦点在轴上的椭圆
∴ 即:
将代入整理得:
∴, ……………………8分
在上 ∴
又
∴
∴2
∴
∴
∴
∴
∴ ……………………10分
∴
∴
……………………12分
考点:椭圆性质及直线与椭圆相交问题
点评:直线与椭圆相交时,常联立方程利用韦达定理求解关于弦长,中点弦及垂直夹角等问题;求椭圆离心率的题目需要转化出关于的方程或不等式
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线与轴交于点,与椭圆交于不同的两点,且。(14分)
(1)求椭圆的方程;
(2)求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知抛物线:和点,若抛物线上存在不同两点、满足.
(I)求实数的取值范围;
(II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)已知椭圆的左焦点的坐标为,是它的右焦点,点是椭圆上一点, 的周长等于.
(1)求椭圆的方程;
(2)过定点作直线与椭圆交于不同的两点,且(其中为坐标原点),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.
(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知为坐标原点,点分别在轴轴上运动,且=8,动点满足 =,设点的轨迹为曲线,定点为直线交曲线于另外一点
(1)求曲线的方程;
(2)求 面积的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com