已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.
科目:高中数学 来源: 题型:解答题
如图,设抛物线方程为,为直线上任意一点,过引抛物线的切线,切点分别为.
(1)求证:三点的横坐标成等差数列;
(2)已知当点的坐标为时,.求此时抛物线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C:(a>b>0)的右焦点为F(1,0),离心率为,P为左顶点。
(1)求椭圆C的方程;
(2)设过点F的直线交椭圆C于A,B两点,若△PAB的面积为,求直线AB的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com