精英家教网 > 高中数学 > 题目详情

(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.

(1);(2)

解析试题分析:(1)联立方程组
化简得

(2)所求圆的圆心为AB中点,所求面积最小的圆的方程是
考点:本题考查了圆方程的求法及直线与圆的位置关系
点评:圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,坐标原点为的面积为
(1)求实数的取值范围;
(2)求关于的函数的表达式及的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知抛物线和点,若抛物线上存在不同两点满足
(I)求实数的取值范围;
(II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于两点,直线分别与抛物线交于点

(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点且斜率为的直线交于两点,是点关于轴的对称点,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线轴上的截距为交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的两焦点是,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上,且,求DPF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点的距离比它到轴的距离多一个单位.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线轴所围成图形的面积

查看答案和解析>>

同步练习册答案