精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知椭圆的两焦点是,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上,且,求DPF1F2的面积.

(Ⅰ).  (Ⅱ) S=|PF1|×|PF2| sinÐF1PF2

解析试题分析:(Ⅰ)由已知条件c=1,,∴a=2,b=.……4分
故椭圆方程为. ……
(Ⅱ)由
∴|PF1|=,|PF2|=.……9分
由余弦定理cosÐF1PF2,∴sinÐF1PF2
∴D F1PF2的面积为S=|PF1|×|PF2| sinÐF1PF2.……12分
考点:本题主要考查椭圆的标准方程,椭圆的几何性质,余弦定理。
点评:基础题,涉及椭圆标准方程问题,要求熟练掌握a,b,c,e的关系,涉及“焦点三角形”问题,往往要利用椭圆的定义。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知直线与曲线交于不同的两点为坐标原点.
(1)若,求证:曲线是一个圆;
(2)若,当时,求曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题满分14分)
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点。
(1)若是第一象限内该椭圆上的一点,,求点P的坐标;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点A、B,且为锐角(其中为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

同步练习册答案