(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,,坐标原点为,的面积为。
(1)求实数的取值范围;
(2)求关于的函数的表达式及的取值范围。
科目:高中数学 来源: 题型:解答题
直线与椭圆交于,两点,已知
,,若且椭圆的离心率,又椭圆经过点,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。
(Ⅰ)求;
(Ⅱ)若直线的斜率为1,求b的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设抛物线方程为,为直线上任意一点,过引抛物线的切线,切点分别为.
(1)求证:三点的横坐标成等差数列;
(2)已知当点的坐标为时,.求此时抛物线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点为轴上的动点,点为轴上的动点,点为定点,且满足,.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点且斜率为的直线与曲线交于两点,,试判断在轴上是否存在点,使得成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com