(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.
科目:高中数学 来源: 题型:解答题
已知点为轴上的动点,点为轴上的动点,点为定点,且满足,.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点且斜率为的直线与曲线交于两点,,试判断在轴上是否存在点,使得成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在、的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的、的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且·="0," ||=||.(点C在x轴上方)
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于M,N两个不同点,求面积的最大值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本大题满分14分)
已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合).求证直线与轴的交点为定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设双曲线的方程为,、为其左、右两个顶点,是双曲线 上的任意一点,作,,垂足分别为、,与交于点.
(1)求点的轨迹方程;
(2)设、的离心率分别为、,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线在轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com