精英家教网 > 高中数学 > 题目详情

已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

(1)(2)

解析试题分析:(1)
所以,所求椭圆方程为 
(2)设
由题意可知直线AB的斜率存在,设过A,B的直线方程为
则由  得
由M分有向线段所成的比为2,得,……8分
,  
得 
解得,  
所以,
考点:椭圆方程与性质及直线与椭圆相交问题
点评:直线与圆锥曲线相交时,常联立方程组,整理为关于x的二次方程,利用韦达定理找到根与系数的关系,通过设而不求的方法转化所求问题,题目中的向量关系常转化为坐标表示,这样即可与交点A,B坐标发生联系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线过点,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点,使得?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,已知点P,曲线C的参数方程为φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与直线C的两个交点为AB,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线与抛物线交于两点.
(1)求线段的长;(2)若抛物线的焦点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆C的圆心在y轴上,且与两直线l1;l2均相切.
(I)求圆C的方程;
(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.

(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-4:坐标系与参数方程
在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程为
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的曲线是由部分抛物线和曲线“合成”的,直线与曲线相切于点,与曲线相切于点,记点的横坐标为,其中

(1)当时,求的值和点的坐标;
(2)当实数取何值时,?并求出此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

同步练习册答案