精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;

解:(1);(2)见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)在平面直角坐标系中,已知点,过点作抛物线的切线,其切点分别为(其中)。
⑴ 求的值;
⑵ 若以点为圆心的圆与直线相切,求圆的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:为抛物线上一点,关于轴对称的点,为坐标原点.(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线
与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线
对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于两点,另一直线经过  的中点,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线的方程为(t为参数),直线与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.

查看答案和解析>>

同步练习册答案