(本小题满分12分)已知椭圆的左右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;
科目:高中数学 来源: 题型:解答题
(本小题满分14分)在平面直角坐标系中,已知点,过点作抛物线的切线,其切点分别为(其中)。
⑴ 求的值;
⑵ 若以点为圆心的圆与直线相切,求圆的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线
与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线
对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线的方程为(t为参数),直线与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且
(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com