精英家教网 > 高中数学 > 题目详情

(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线的方程为(t为参数),直线与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l:  y="x-2" 与抛物线y2=2x相交于两点A、B,
(1)求证:OA⊥OB
(2)求线段AB的长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)椭圆的左、右焦点分别为,直线经过点与椭圆交于两点。
(1)求的周长;
(2)若的倾斜角为,求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求||(T为(1)中的点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?

查看答案和解析>>

同步练习册答案