(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.
科目:高中数学 来源: 题型:解答题
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线
与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线
对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l0分)直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线的方程为(t为参数),直线与曲线C的公共点为T.
(Ⅰ)求点T的极坐标;(Ⅱ)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com